Influence of low-temperature chemistry on steady detonations with curvature losses

Image credit: F. Veiga-Lopez et al.

Abstract

The influence of low temperature chemistry (LTC) on the locus of steady solutions predicted by a ZND model with curvature losses and detailed kinetics was assessed using undiluted / CO2-diluted stoichiometric DME-O2 mixtures. Results show (i) the existence of an additional critical point at large velocity deficits when the LTC sub-mechanism is included in the reaction model, and (ii) a shift in the criticality from small to large velocity deficits as CO2-dilution is increased. Detailed thermo-chemical analyses revealed the importance of LTC in enabling an increased resistance to losses at large velocity deficits. LTC results in a temperature increase of ∼ 200 K at the beginning of the reaction zone that activates the intermediate and high temperature reactions, thereafter leading to the main heat release stage. Without a process that replenishes the OH radical pool at postshock temperatures below 1000 K the critical point at large velocity deficits ceases to exist.

Publication
Proceedings of the combustion institute
Fernando Veiga López
Fernando Veiga López
Assistant professor of Fluid Mechanics

Passionate researcher on hydrogen combustion for safety and power generation.